Function

2019 M/J,O/N

0606/21/M/J/19

1. a) Sketch the graph of y = |5x - 3|, showing the coordinates of the points where the graph meets the coordinate axes.

[3]

b) Solve the equation |5x - 3| = 2 - x.

[3]

0606/22/M/J/19

2. (i) Express $5x^2 - 15x + 1$ in the form $p(x + q)^2 + r$, where p, q and r are constants.

[3]

(ii) Hence state the least value of $x^2 - 3x + 0.2$ and the value of x at which this occurs.

[2]

3. (a) The functions f and g are defined by

$$f(x) = 5x - 2$$
 for $x > 1$,
 $g(x) = 4x^{2} - 9$ for $x > 0$

(i) State the range of g.

[1]

(ii) Find the domain of gf.

[1]

(iii) Showing all your working, find the exact solutions of gf(x) = 4.

[3]

- (b) The function h is defined by $h(x) = \sqrt{x^2 1}$ for $x \le -1$.
 - (i) State the geometrical relationship between the graphs of y = h(x) and $y = h^{-1}(x)$.

[1]

(ii) Find an expression for $h^{-1}(x)$.

[3]

0606/12/O/N/19

4. It is given that $f: x \to \sqrt{x}$ for $x \ge 0$, $g: x \to x + 5$ for $x \ge 0$

Identify each of the following functions with one of f^{-1} , g^{-1} , fg, gf, f^2 , g^2 .

(i) $\sqrt{x + 5}$

[1]

(ii) x - 5

[1]

(iii) x^2

[1]

(iv) x + 10

[1]

0606/21/O/N/19

5. (i) Draw the graph of y = |2x - 3|.

[2]

(ii) Solve the equation 7 - |2x - 3| = 0.

[3]

0606/23/O/N/19

6. Solve |3x + 2| = x + 4.

[3]

7. (i) Given that $y = 2x^2 - 4x - 7$, write y in the form $a(x - b)^2 + c$, where a, b and c are constants.

[3]

(ii) Hence write down the minimum value of y and the value of x at which it occurs.

[2]